Graph the function. Identify the graph features. *Compare* the graph with the graph of y = |x|.

1.)
$$y = |x + 2|$$

2.)
$$y = |x - 1| + 4$$

3.)
$$f(x) = -3|x| + 3$$

vertex:

graph opens:

X		
у		

vertex:

graph opens:

х		
у		

vertex:

graph opens:

х		
у		

comparison(s):

comparison(s):

comparison(s):

4.)
$$f(x) = 2|x+1| - 6$$

$$5.) f(x) = -4|x+2| + 5$$

vertex:

graph opens:

х		
у		

vertex:

graph opens:

х		
у		

vertex:

graph opens:

х		
у		

comparison(s):

comparison(s):

comparison(s):

Write an equation of the graph shown.

8.)

9.)

Write an equation of the line, in slope-intercept form, that satisfies the given conditions.

10.) through
$$(4,-1)$$
 and $(6,-7)$

11.) through (7, 1); parallel to
$$y = -x + 3$$

Find the x- and y-intercepts of the line with the given equation. Write your intercepts as ordered pairs.

12.)
$$x + 5y = -15$$

13.)
$$2x - y = 10$$

14.)
$$-6x + 8y = -36$$

x-int: ______ *y*-int: ______ *y*-int: ______ *y*-int: _____ *y*-int: ______

Tell whether the lines are parallel, perpendicular, or neither.

Graph the equation using any method. Be sure to identify the components used to graph (i.e. slope, x- or y-int.)

16.)
$$-6x - 2y = -4$$

lines are: _____